Insight into structure evolution of carbon nitrides and its energy conversion as luminescence

Author:

Zhang Hao12,Zhang Jingwei2,Chen Wenjie1,Tao Minjia2,Meng Xianguang13ORCID,Zhang Yuanjian4,Zuo Guifu13ORCID

Affiliation:

1. Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei China

2. College of Clinical Medicine North China University of Science and Technology Tangshan Hebei China

3. Hebei Iron and Steel Laboratory Tangshan Hebei China

4. Jiangsu Engineering Laboratory of Smart Carbon‐Rich Materials and Device, Jiangsu Province Hi‐Tech Key Laboratory for Bio‐Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School Southeast University Nanjing Jiangsu China

Abstract

AbstractA series of carbon nitride (CN) materials represented by graphitic carbon nitride (g‐C3N4) have been widely used in bioimaging, biosensing, and other fields in recent years due to their nontoxicity, low cost, and high luminescent quantum efficiency. What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level. Hence, it is time to summarize the related research on CN structural evolution and make a prospect on future developments. In this review, we first summarize the research history and multiple structural evolution of CN. Then, the progress of improving the luminescence performance of CN through structural evolution was discussed. Significantly, the relationship between CN structure evolution and energy conversion in the forms of photoluminescence, chemiluminescence, and electrochemiluminescence was reviewed. Finally, key challenges and opportunities such as nanoscale dispersion strategy, luminous efficiency improving methods, standardization evaluation, and macroscopic preparation of CN are highlighted.

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3