Regression trees for interval‐censored failure time data based on censoring unbiased transformations and pseudo‐observations

Author:

Yang Ce1,Li Xianwei2,Diao Liqun2ORCID,Cook Richard J.2ORCID

Affiliation:

1. Vertex Pharmaceuticals Boston Massachusetts USA

2. Department of Statistics and Actuarial Science University of Waterloo Waterloo Ontario Canada

Abstract

AbstractInterval‐censored data arise when a failure process is under intermittent observation and failure status is only known at assessment times. We consider the development of predictive algorithms when training samples involve interval censoring. Using censoring unbiased transformations and pseudo‐observations, we define observed data loss functions, which are unbiased estimates of the corresponding complete data loss functions. We show that regression trees based on these loss functions can recover the tree structure and yield good predictive accuracy. An application is given to a study involving individuals with psoriatic arthritis where the aim is to identify genetic markers useful for the prediction of axial disease within 10 years of a baseline assessment.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3