Stability challenges and opportunities of NiFe‐based electrocatalysts for oxygen evolution reaction in alkaline media

Author:

Han Yujun1,Wang Jingyi1,Liu Yuhang1,Li Tianqi1,Wang Tongzhou234,Li Xinyue1,Ye Xinran1,Li Guodong5,Li Jihong234,Hu Wenbin1,Deng Yida124

Affiliation:

1. School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin University Tianjin China

2. State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering Hainan University Haikou China

3. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin China

4. Collaborative Innovation Center of Marine Science and Technology Hainan University Haikou China

5. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Changchun Jilin China

Abstract

AbstractWater splitting is a critical process for the production of green hydrogen, contributing to the advancement of a circular economy. However, the application of water splitting devices on a large scale is primarily impeded by the sluggish oxygen evolution reaction (OER) at the anode. Thus, developing and designing efficient OER catalysts is a significant target. NiFe‐based catalysts are extensively researched as excellent OER electrocatalysts due to their affordability, abundant reserves, and intrinsic activities. However, they still suffer from long‐term stability challenges. To date, few systematic strategies for improving OER durability have been reported. In this review, various advanced NiFe‐based catalysts are introduced. Moreover, the OER stability challenges of NiFe‐based electrocatalysts in alkaline media, including iron segregation, structural degradation, and peeling from the substrate are summarized. More importantly, strategies to enhance OER stability are highlighted and opportunities are discussed to facilitate future stability studies for alkaline water electrolysis. This review presents a design strategy for NiFe‐based electrocatalysts and anion exchange membrane (AEM) electrolyzers to overcome stability challenges in OER, which also emphasizes the importance of long‐term stability in alkaline media and its significance for achieving large‐scale commercialization.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3