Affiliation:
1. Key Laboratory of Bio‐Based Material Science and Technology (Ministry of Education), Material Science and Engineering College Northeast Forestry University Harbin China
Abstract
AbstractMicrocrystalline cellulose (MCC) fibers are co mmonly used to reinforce polymers; however, their freeze‐drying process consumes a lot of energy. In this study, MCC dried at different temperatures, oven‐dried at 25, 50, 75, and 103°C and freeze‐dried, was evaluated based on their effect on the reinforced composites. The dried MCC was compounded with polylactic acid (PLA) by melt extrusion and compressed into an MCC/PLA composite film. The morphology, structure, and crystallinity of the dried MCCs and MCC/PLA composites were analyzed using scanning electron microscopy, laser particle size analysis, x‐ray diffraction, mechanical testing, and Fourier transform infrared spectroscopy. It was proved that MCC dried at 103°C was more uniformly dispersed and tightly bound to the PLA matrix than freeze‐dried MCC. Tensile measurements showed that the MCC dried at 103°C had nearly the same tensile strength (58.35 MPa) as that of the freeze‐dried MCC (58.7 MPa) and was higher than that of the other oven‐dried MCC. Energy consumption evaluation revealed that oven‐drying consumed much less energy than freeze‐drying MCC for 24 h to obtain the same final moisture content. MCC dried at 103°C has significantly better properties than MCC dried at 25, 50, and 75°C, similar to freeze‐drying. Concerning performance and energy consumption, drying at 103°C is determined the optimal choice to support the preparation of MCC‐reinforced PLA composites.Highlights
Drying temperature effects aggregation of MCC.
MCC Dried at 103°C can present similar properties to freeze‐dried MCC but save more energy.
Oven‐drying can be a good way to dry MCC for the preparation of MCC/PLA composite.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献