From primers to pipettes: An immersive course introducing high school students to qPCR for quantifying chemical defense gene expression

Author:

Spooner Zeke T.1ORCID,Encerrado‐Manriquez Angela M.1,Truong Tina T.1,Nicklisch Sascha C. T.1ORCID

Affiliation:

1. Department of Environmental Toxicology University of California‐Davis Davis California USA

Abstract

AbstractWe created a 2‐week, dual‐module summer course introducing high school students to environmental toxicology by teaching them quantitative polymerase chain reaction (qPCR) as a way to quantify gene expression of chemical defense proteins in response to exposure to environmental pollutants. During the course, students are guided through the various stages of a successful qPCR experiment: in silico primer design and quality control, total RNA extraction and isolation, cDNA conversion, primer test PCR, and evaluation of results via agarose gel electrophoresis or UV/Vis spectra. The course combines lectures, discussions, and demonstrations with dry and wet laboratory sections to give students a thorough understanding of the scope, utility, and chemical principles of qPCR. At the end of the course, the students are taught how to analyze qPCR data and are encouraged to discuss their findings with other classmates to evaluate their hypotheses and assess possible sources of error. This course was designed to be easily adaptable to multiple test species, chemical exposures, and genes of interest. To explore both terrestrial and aquatic toxicology, the students use honey bees (Apis mellifera) and mosquitofish (Gambusia affinis) as test organisms, as well as ABC‐type efflux transporters, antioxidant enzymes, and cytochrome P450 enzymes as endpoints for assessing gene expression. We share this course setup and applied protocols to encourage others to design and offer similar courses that give high school students a hands‐on introduction to a broad swath of environmental toxicology research and an opportunity to develop scientific skills necessary for university‐level research.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3