Affiliation:
1. Department of Engineering Mechanics College of Mechanics and Materials, Hohai University Nanjing China
2. School of Mechanical Engineering and Mechanics, Ningbo University Ningbo China
Abstract
AbstractPhysics‐informed neural network (PINN) has been widely concerned for its higher computational accuracy compared with conventional neural network. The merit of PINN mainly comes from its ability to embed known physical laws or equations into data‐based neural networks. However, when dealing with the rate‐dependent nonlinear problems, such as elasto‐plasticity with loading and unloading and hypoelastic large deformation, the conventional PINN cannot obtain satisfactory results. In this article, a stepwise physics‐informed neural network (sPINN) is proposed to solve large deformation problems of hypoelastic materials. The whole process of sPINN can be divided into a series of time steps. In each time step, the rate constitutive equation expressed by Hughes‐Winget algorithm and momentum governing equation are incorporated into the loss function as physical constraints. The displacement and stress fields can be resolved by completing the training process of each time step. Three numerical examples are designed to validate the proposed method by comparing with the solutions of FEM. The results show that sPINN can accurately resolve the displacement and stress fields in path‐dependent large deformation problems. Furthermore, the performance of the sPINN on small data sets are also discussed, which illustrates that sPINN is more capable of predicting the global solution on small data sets as compared with conventional artificial neural network.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Subject
Applied Mathematics,General Engineering,Numerical Analysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献