Novel Antifungal and Antifeedant Metabolites from Penicillium chrysogenum Co‐Cultured with Nemania primolutea and Aspergillus fumigatus

Author:

Cen Rong‐Huan1,Li Shi‐Yu1,Yang Ya‐Bin1,Yang Xue‐Qiong1ORCID,Ding Zhong‐Tao12

Affiliation:

1. Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province Yunnan Characteristic Plant Extraction Laboratory School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China

2. Yunnan University of Chinese Medicine Kunming 650500 P. R. China

Abstract

AbstractThe endophyte Nemania primolutea, inhibited the growth of Penicillium chrysogenum in the coculture system. Four new compounds, nemmolutines A–B (1–2), and penigenumin (3) from N. primolutea, penemin (4) from P. chrysogenum were isolated from the coculture. On the other hand, P. chrysogenum inhibited the Aspergillus fumigatus in the coculture. Induced metabolites (13–16) with monasone naphthoquinone scaffolds including a new one from P. chrysogenum were produced by the coculture of P. chrysogenum, and A. fumigatus. Interesting, cryptic metabolites penicichrins A–B isolated from wild P. chrysogenum induced by host Ziziphus jujuba medium were also found in induced P. chrysogenum cultured in PDB ordinary medium. So the induction of penicichrin production by supplementing with host extract occurred in the fungus P. chrysogenum not the host medium. The productions of penicichrins were the spontaneous metabolism, and the metabolites (13–16) were the culture driven. Compounds 4, 6, 8, 10, 11, 14, and 15 showed significant antifungal activities against the phytopathogen Alternaria alternata with MICS of 1–8 μg/mL, and compounds 7, 9, and 12 indicated significant antifeedant activities against silkworms with feeding deterrence indexes (FDIs) of 92 %, 66 %, and 64 %. The carboxy group in 4‐(2‐hydroxybutynoxy)benzoic acid derivatives, and xylabisboeins; the hydroxy group in mellein derivatives; and the quinoid in monasone naphthoquinone increased the antifungal activities.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Molecular Biology,Molecular Medicine,General Chemistry,Biochemistry,General Medicine,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3