QSAR Modelling of Biological Activity in Cannabinoids with Quantum Similarity Combinations of Charge Fitting Schemes and 3D‐QSAR

Author:

Navarro‐Acosta Daniela1ORCID,Coba‐Jimenez Ludis2ORCID,Pérez‐Gamboa Alfredo3,Cubillan Néstor2ORCID,Vivas‐Reyes Ricardo1ORCID

Affiliation:

1. Grupo de Investigación Química Cuántica y Teórica, Facultad de Ciencias Exactas y Naturales Universidad de Cartagena Cartagena Colombia

2. Programa de Química, Facultad de Ciencias Básicas Universidad del Atlántico, Barranquilla Colombia

3. Grupo de Investigación de Compuestos Heterocíclicos, Programa de Química, Facultad de Ciencias Básicas Universidad del Atlántico Barranquilla Colombia

Abstract

AbstractQuantitative structure−activity relationship(QSAR) modeled the biological activities of 30 cannabinoids with quantum similarity descriptors(QSD) and Comparative Molecular Field Analysis (CoMFA). The PubChem[https://pubchem.ncbi.nlm.nih.gov/] database provided the geometries, binding affinities(Ki) to the cannabinoid receptors type 1(CB1) and 2(CB2), and the median lethal dose(LD50) to breast cancer cells. An innovative quantum similarity approach combining (self)‐similarity indexes calculated with different charge‐fitting schemes under the Topo‐Geometrical Superposition Algorithm(TGSA) were used to obtain QSARs. The determination coefficient(R2) and leave‐one‐out cross‐validation[Q2(LOO)] quantified the quality of multiple linear regression and support vector machine models. This approach was efficient in predicting the activities, giving predictive and robust models for each endpoint [pLD50: R2=0.9666 and Q2(LOO)=0.9312; pKi(CB1): R2=1.0000 and Q2(LOO)=0.9727, and pKi(CB2): R2=0.9996 and Q2(LOO)=0.9460], where p is the negative logarithm. The descriptors based on the electrostatic potential encrypted better electronic information involved in the interaction. Moreover, the similarity‐based descriptors generated unbiased models independent of an alignment procedure. The obtained models showed better performance than those reported in the literature. An additional 3D‐QSAR CoMFA analysis was applied to 15 cannabinoids, taking THC as a template in a ligand‐based approach. From this analysis, the region surrounding the amino group of the SR141716 ligand is the more favorable for the antitumor activity.

Publisher

Wiley

Subject

Molecular Biology,Molecular Medicine,General Chemistry,Biochemistry,General Medicine,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3