Design, Synthesis and Antifungal Activity of Nootkatone Derivatives Containing Acylhydrazone and Oxime Ester

Author:

Liang Qilong12,Gao Futian123,Jian Junyou12,Yang Jue12,Hao Xiaojiang12,Huang Liejun12ORCID

Affiliation:

1. State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China

2. Natural Products Research Center of Guizhou Province Guiyang 550014 People's Republic of China

3. School of Pharmacy Guizhou University Guiyang 550025 People's Republic of China

Abstract

AbstractIn an attempt to search for new natural products‐based antifungal agents, fifty‐three nootkatone derivatives were designed, synthesized, and evaluated for their antifungal activity against Phytophthora parasitica var nicotianae, Fusarium oxysporum, Fusarium graminearum and Phomopsis sp. by the mycelium growth rate method. Nootkatone derivatives N17 exhibited good inhibitory activity against Phomopsis. sp. with EC50 values of 2.02 μM. The control effect of N17 against Phomopsis. sp. on kiwifruit showed that N17 exhibited a good curative effect in reducing kiwifruit rot at the concentration of 202 μM(100×EC50 ), with the curative effect of 41.11 %, which was better than commercial control of pyrimethanil at the concentration of 13437 μM(100×EC50 ) with the curative effect of 38.65 %. Phomopsis. sp. mycelium treated with N17 showed irregular surface collapse and shrinkage, and the cell membrane crinkled irregularly, vacuoles expanded significantly, mitochondria contracted, and organelles partially swollen by the SEM and TEM detected. Preliminary pharmacological experiments show that N17 exerted antifungal effects by altering release of cellular contents, and altering cell membrane permeability and integrity. The cytotoxicity test demonstrated that N17 showed almost no toxicity to K562 cells. The presented results implied that N17 may be as a potential antifungal agents for developing more efficient fungicides to control Phomopsis sp.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3