Chemical Profiling and Antifungal Activity of Ziziphora clinopodioides Leaf Essential Oil against the Pathogen Verticillium dahliae

Author:

Han Caixia12,Mei Yu12,Zhou Shixing123,Shao Hua1234ORCID

Affiliation:

1. State Key Laboratory of Desert and Oasis Ecology Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences Urumqi 830011 China

2. Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences Urumqi 830011 China

3. University of Chinese Academy of Sciences Beijing China

4. Research Center for Ecology and Environment of Central Asia Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences Urumqi China

Abstract

AbstractEssential oils (EOs) are often used as natural antifungal agents to control the growth of phytopathogenic fungi. The aim of this study was to determine the effect of Ziziphora clinopodioides leaf EO against Verticillium dahliae, a pathogenic fungus of cotton. Gas chromatography‐mass spectrometry (GC/MS) analysis revealed the presence of 15 compounds of the total of extracted oil, which was consisted of 98.79 % monoterpenes and 0.61 % sesquiterpenes. The major constituents were pulegone (62.17 %), isomenthone (18.42 %), l‐menthone (5.55 %) and piperitenone (3.99 %). The mycelial growth of Verticillium dahliae was completely inhibited at 0.24 μL/mL air under vapor phase condition. Considerable morphological variations were also observed in the fungal sclerotia at the contact phase at 3 μL/mL. This study demonstrated for the first time that Z. clinopodioides EO can effectively inhibit the growth of V. dahliae, implying that it has the potential to be explored as an antifungal agent against Verticillium Wilt of cotton.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

Wiley

Subject

Molecular Biology,Molecular Medicine,General Chemistry,Biochemistry,General Medicine,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3