The ecology and quantitative genetics of seed and seedling traits in upland and lowland ecotypes of a perennial grass

Author:

Razzaque Samsad12,Juenger Thomas E.1

Affiliation:

1. Department of Integrative Biology University of Texas at Austin Austin Texas 78712

2. Current Address: Plant Molecular and Cellular Biology Laboratory Salk Institute for Biological Studies La Jolla California 92037

Abstract

Abstract Plants have evolved diverse reproductive allocation strategies and seed traits to aid in dispersal, persistence in the seed bank, and establishment. In particular, seed size, dormancy, and early seedling vigor are thought to be key functional traits with important recruitment and fitness consequences across abiotic stress gradients. Selection for favored seed-trait combinations, or against maladaptive combinations, is likely an important driver shaping recruitment strategies. Here, we test for seed-trait plasticity and patterns of recruitment using two genotypes representative of contrasting upland and lowland ecotypes of Panicum hallii with field experiments in native versus foreign habitats. Furthermore, we test whether seed traits have been under directional selection in P. hallii using the v-test based on trait variance in a genetic cross. Finally, we evaluate the genetic architecture of ecotypic divergence for these traits with quantitative trait locus (QTL) mapping. Field experiments reveal little plasticity but support a hypothesis of adaptation divergence among ecotypes based on recruitment. Patterns of segregation within recombinant hybrids provides strong support for directional selection driving ecotypic divergence in seed traits. Genetic mapping revealed a polygenic architecture with evidence of genetic correlation between seed mass, dormancy, and seedling vigor. Our results suggest that the evolution of these traits may involve constraints that affect the direction of adaptive divergence. For example, seed size and germination percentage shared two colocalized QTL with antagonistic additive effects. This supports the hypothesis of a functional genetic relationship between these traits, resulting in either large seed/strong dormancy or small seed/weak dormancy trait combinations. Overall, our study provides insights into the factors facilitating and potentially constraining ecotypic differentiation in seed traits.

Funder

Directorate for Biological Sciences

Texas Ecological Laboratory

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Reference76 articles.

1. Seed weight in relation to environmental conditions in California;Baker;Ecology,1972

2. Population dynamic consequences of delayed life-history effects;Beckerman;Trends Ecol. Evol,2002

3. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;J. R. Stat. Soc. B Stat. Methodol,1995

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3