Epoxy filled with nylon powder—An approach to reduce void formation via fused particle method

Author:

Abdul Malek Nur Syahrul Nizam1,Engku Zawawi Engku Zaharah1,Romli Ahmad Zafir12,Nik Ibrahim Nik Noor Idayu12ORCID

Affiliation:

1. Faculty of Applied Sciences Universiti Teknologi MARA Shah Alam Selangor Malaysia

2. Centre for Chemical Synthesis and Polymer Technology, Institute of Science Universiti Teknologi MARA Shah Alam Selangor Malaysia

Abstract

AbstractIn the quest for superior materials, especially in industrial applications demanding strength, stiffness, low density, and cost‐efficiency, composite materials have emerged as game changers. Combining a polymer matrix with reinforcement materials, they hold great promise. However, the challenge of particle agglomeration looms large, especially at high loadings. Particle agglomeration disrupts filler distribution and gives rise to voids in polymer composites. This study investigates the fusion behavior of agglomerated Nylon particles and their influence on Nylon/epoxy composites. Using epoxy resin and Nylon SP301, a micron‐sized Nylon 12 powder with a 185°C melting point, composites were prepared at 3%, 9%, and 15% Nylon loading. After curing, these composites underwent controlled heating at 185, 195, and 205°C, with a fusion of 20–100 min. At 185°C, particles initially remain separate, forming slight clumps after 20 min and increasingly sticking together at 60 and 100 min. Shifting to 195°C, particles begin consolidating into a solid mass even after 20 min. The introduction of Nylon decreases composite density compared to pure epoxy, and density changes vary with fusion time, exhibiting complete fusion, partial fusion, and shrinkage‐induced gap formation. Differential scanning calorimetry analysis reveals evolving glass transition temperatures (Tg) influenced by the fusion process, with longer fusion times yielding higher Tg and greater heat capacity.

Funder

Ministry of Higher Education

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3