Performance regulation of the TFC NF membrane via the introduction of oleic acid into different organic solvents

Author:

Lu Yandong1ORCID,Ning Jiaxu1,Zong Yue1,Ding Fu1,Liu Gaige1,Zhang Ruijun1

Affiliation:

1. School of Civil and Transportation Engineering Hebei University of Technology Tianjin P. R. China

Abstract

AbstractBACKGROUNDTailored design of high‐performance nanofiltration membranes is desirable. The physicochemical properties of the organic phaseare essential for the preparation of nanofiltration membranes. Therefore, byfine‐tuning the organic phase, it is possible to achieve nanofiltrationmembranes with enhanced performance.RESULTSIn this work, oleic acid, a naturally extracted fatty acid, wasintroduced into three different organic solvents (n‐heptane, n‐octane andisopar G) to construct special oil phases for interfacial polymerization. Testingresults showed that proper dosage of oleic acid addition can effectivelydecrease the nanofiltration membrane pore size and enhance the salt rejectionregardless of the solvent type. Taking n‐octane as example, 5% oleic acidaddition in it can decrease the mean pore size from 0.500 nm to 0.341 nm and improve the MgSO4 rejection from 52.4% to 95.5%. Further characterizationindicated that the introduction of oleic acid into organic solvent cansignificantly reduce the interfacial tension and promote the diffusion of piperazinefrom aqueous phase to the oil phase. In addition, oleic acid could react with piperazineand produce some white particles that could be embed into the polyamide layer, thus altering the surface morphology.CONCLUSIONIn this work, a novel modified thin film composite nanofiltration membrane was prepared by a simple and controllable oleic acid assisted interfacial polymerization strategy, which exhibits good water permeability, solute selectivity and antifouling property. Without changing the existing process, our strategy opens up a simple, environmentally friendly and operable route for the synthesis of thin film composite nanofiltration membranes. © 2024 Society of Chemical Industry (SCI).

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3