Multilayer adsorption of reactive orange 16 dye onto Fe2O3/ZnO hybrid nanoadsorbent: mechanistic insights from kinetics, isotherms and dynamic light scattering studies

Author:

Hussain Nasira1,Asif Muhammad2,Shafaat Shanza1,Khan Muhammad Saqib34,Riaz Nadia3,Iqbal Mazhar5ORCID,Javed Abdullah1,Butt Tayyab Ashfaq6,Shaikh Ahson Jabbar1,Bilal Muhammad3

Affiliation:

1. Department of Chemistry COMSATS University Islamabad Abbottabad Pakistan

2. Graduate school of Science and Technolgy University of Tsukuba Tsukuba Japan

3. Department of Environmental Sciences COMSATS University Islamabad Abbottabad Pakistan

4. Department of Biomedical Sciences Pak‐Austria Fachhochschule: Institute of Applied Sciences and Technology Haripur Pakistan

5. Environmental Biotechnology and Bioremediation Lab, Department of Environmental Sciences, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan

6. Department of Civil Engineering College of Engineering, University of Hail Ha'il Saudi Arabia

Abstract

AbstractBACKGROUNDFe2O3/ZnO hybrid nanoadsorbent was synthesized by the coprecipitation method and characterized. The hydrodynamic size and stability of the nanoadsorbent were investigated in batch adsorption of toxic Reactive orange (RO)16 dye at increasing concentrations. The mechanism of monolayer and multilayer dye adsorption was elucidated for the first time together through dynamic light scattering (DLS), isotherm, kinetic and thermodynamic studies. A tomato seed germination assay was performed to confirm the material and treated water toxicity.RESULTSThe ferromagnetic nanoadsorbent exhibited 85% RO16 dye removal. Nonlinear fitting of isotherm and kinetic models suggest the chemisorption (monolayer) and physisorption (multilayer) of dye over the heterogeneous surface of the nanoadsorbent, respectively, at lower and higher concentration of dye. In line with these mechanistic insights, DLS studies demonstrate that monolayer adsorption increased hydrodynamic size up to 100 mg L−1 by face‐off binding of dye molecules, whereas multilayer adsorption was in the 100–500 mg L−1 concentration range; besides increase in adsorption capacity, did not magnify hydrodynamic size owing to face‐on binding with multiple dye molecule stacking. Zeta potential data confirmed greater stability of the nanoadsorbent at solution pH with large hydrodynamic size. Thermodynamic studies suggested that endothermic and spontaneous adsorption process primarily controlled physical adsorption at higher dye concentrations. A toxicity assay proved that the nanoadsorbent and treated water are environmentally safe.CONCLUSIONDLS, isotherm and kinetic studies elucidated the complex adsorption mechanism over a heterogenous surface of a hybrid nanoadsorbent. It was found that monolayer chemisorptive face‐off binding of RO16 molecules increased hydrodynamic size whereas multilayer physisorptive face‐on binding did not affect hydrodynamic size; rather, it remained stable with increasing RO16 concentration. © 2024 Society of Chemical Industry (SCI).

Funder

University of Hail

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3