Characterizing the seismic response of a molten salt nuclear reactor

Author:

Mir Faizan Ul Haq1ORCID,Whittaker Andrew S.1,Kosbab Benjamin D.2,Nguyen Nam3

Affiliation:

1. Department of Civil, Structural, and Environmental Engineering University at Buffalo Buffalo New York USA

2. Simpson Gumpertz & Heger Atlanta Georgia USA

3. Kairos Power Alameda California USA

Abstract

AbstractOne Generation IV nuclear reactor, which uses a fluoride salt as a coolant, graphite reflector blocks as a moderator, and circulating buoyant TRISO pebbles as fuel is at an advanced stage of development. To characterize the seismic behavior of components of this reactor, validate numerical models for analysis, and develop recommendations for design, a set of earthquake‐simulator experiments on a scaled model of the reactor vessel and its internals was executed on a six‐degree‐of‐freedom earthquake simulator. The model was seismically isolated at its base using two types of spherical sliding bearings. The scaled model involved representations of the prototype reactor vessel, core barrel, reflector blocks, coolant, and spherical fuel pebbles. The material and geometric properties of different test components were selected based on a dynamic similitude scaling analysis and an approximate length scale of 0.4. Four sets of three‐component earthquake motions were used as inputs for testing. Instrumentation on the test specimen recorded the dynamic responses of the outer vessel, core barrel, and reflector‐block assembly, the hydrodynamic responses (sloshing and hydrodynamic pressure) of the liquid coolant, pebble consolidation under earthquake shaking, and the behavior of the isolation systems. This paper describes the design of the experiments and presents key results from the tests. The dynamic responses of the outer vessel, core barrel, and the reflector blocks revealed that the components responded as a unit for the intense shaking used in the experiments. The sloshing response of the fluid in a thin annulus near the perimeter of the vessel was heavily damped. The change in the packing fraction of the pebble bed under repeated, intense 3D earthquake shaking was less than 3%. Seismically isolating the vessel substantially reduced demands on its internal components.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference26 articles.

1. Options for Scaled Experiments for High Temperature Liquid Salt and Helium Fluid Mechanics and Convective Heat Transfer

2. Towards standardized nuclear reactors: Seismic isolation and the cost impact of the earthquake load case

3. Seismic isolation: A pathway to standardized advanced nuclear reactors

4. Kairos Power.“Preliminary safety analysis report for the Kairos Power fluoride salt‐ cooled high temperature non‐power reactor (Hermes) ‐ revision 0.” ML21272A375 September 29 2021 United States Nuclear Regulatory Commission Washington D.C;2021.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3