Neural machine translation for in‐text citation classification

Author:

Safder Iqra1,Ali Momin2,Aljohani Naif Radi3,Nawaz Raheel4,Hassan Saeed‐Ul5

Affiliation:

1. Department of Computer Science National University of Computer & Emerging Sciences Lahore Pakistan

2. Department of Computer Science Information Technology University Lahore Pakistan

3. Faculty of Computing and Information Technology King Abdulaziz University Jeddah Saudi Arabia

4. Staffordshire University Stoke‐on‐Trent UK

5. Department of Computing and Mathematics Manchester Metropolitan University Manchester UK

Abstract

AbstractThe quality of scientific publications can be measured by quantitative indices such as the h‐index, Source Normalized Impact per Paper, or g‐index. However, these measures lack to explain the function or reasons for citations and the context of citations from citing publication to cited publication. We argue that citation context may be considered while calculating the impact of research work. However, mining citation context from unstructured full‐text publications is a challenging task. In this paper, we compiled a data set comprising 9,518 citations context. We developed a deep learning‐based architecture for citation context classification. Unlike feature‐based state‐of‐the‐art models, our proposed focal‐loss and class‐weight‐aware BiLSTM model with pretrained GloVe embedding vectors use citation context as input to outperform them in multiclass citation context classification tasks. Our model improves on the baseline state‐of‐the‐art by achieving an F1 score of 0.80 with an accuracy of 0.81 for citation context classification. Moreover, we delve into the effects of using different word embeddings on the performance of the classification model and draw a comparison between fastText, GloVe, and spaCy pretrained word embeddings.

Publisher

Wiley

Subject

Library and Information Sciences,Information Systems and Management,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Application of Online Translation System Based on Web;2023 IEEE International Conference on Paradigm Shift in Information Technologies with Innovative Applications in Global Scenario (ICPSITIAGS);2023-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3