Forward selection‐based ensemble of deep neural networks for melanoma classification in dermoscopy images

Author:

Söylemez Ömer Faruk1ORCID

Affiliation:

1. Department of Computer Engineering Dicle University Diyarbakir Turkey

Abstract

AbstractMelanoma is a rare skin cancer that constitutes only 1% of skin cancer cases. However, its ability to spread to other organs makes it deadliest among the four major cancer types. Early diagnosis of melanoma is essential, as it prevents cancer from spreading to other body parts, therefore significantly reducing mortality rates. In this study, we presented a forward selection‐based ensembling strategy for deep neural networks to aid the diagnosis of melanoma in dermoscopy images. The proposed approach uses an ensemble of neural networks with varying input sizes to effectively capture size‐related various properties of dermoscopy images. To this end, EfficientNet models B3–B7 are used with input resolutions of 256, 384, 512, and 768. Training and validation are carried out in a triple stratified cross‐validation style with folds providing patient isolation, balance in the percentage of classes and balanced patient count distribution. Ensembles are formed by a modified form of forward selection algorithm. Experimental results show that the AUC for classification is increased by 2.01% using the proposed ensembling scheme.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3