Design and analysis of a super compact UWB antenna for accurate detection of breast tumors using monostatic radar‐based microwave imaging technique

Author:

Grover Priyanka1ORCID,Singh Hari Shankar23ORCID,Sahu Sanjay Kumar1

Affiliation:

1. School of Electronics and Electrical Engineering (SEEE) Lovely Professional University Jalandhar India

2. Department of Electronics and Communication Engineering Thapar Institute of Engineering and Technology Patiala India

3. TIET‐VT Center of Excellence in Emerging Materials TIET Patiala India

Abstract

AbstractThis article proposes a low‐profile ultra‐wideband (UWB) antenna for breast tumor detection using the monostatic radar‐based microwave imaging (RBMI) technique. The proposed UWB antenna consists of a circular patch and ground plane along with a modified tapered feed line having a total size of 13 × 9 × 1.6 mm3. The designed antenna operates from 4 to 11 GHz based on a −10 dB reflection coefficient with a peak gain of 9.5 dBi at 4.8 GHz. Experimental validation is carried out after fabricating the prototype of the UWB antenna and the breast mimic. The measured backscattered signals are captured using the vector network analyzer (E‐5063A) by keeping the antenna at 10 mm from the breast phantom. After that, post‐processing of the measured data is done to detect the exact depth and location of the malignant tissue. The proposed antenna uses UWB band frequency of operation because it has some unique features, that is, it provides immunity to multipath fading, has a simple design, has a low cost of fabrication, and has biological friendliness. Moreover, due to the proposed antenna's resonance at a lower resonant frequency better depth of penetration is achieved in human body phantoms and the proposed antenna provides specific absorption rates (SAR) of 0.877 W/kg over 1 g of tissue at 4.8 GHz, which is an acceptable limit for SAR as per FCC guidelines. Therefore, the proposed antenna and monostatic RBMI technique are good candidates for breast tumor detection.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials

Reference48 articles.

1. www.who.int/health-topics/cancer

2. www.medicalnewstoday.com/articles/37136#causes

3. Microwave sensors for breast cancer detection;Wang L;Sensors,2018

4. Better breast cancer detection

5. Miniaturized UWB microstrip antenna with T‐slot for detecting malignant tumors by microwave imaging;Karli R;Int J Microw Opt Technol,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3