Assessing Contaminants of Emerging Concern in the Great Lakes Ecosystem: A Decade of Method Development and Practical Application

Author:

Ankley Gerald T.1ORCID,Corsi Steven R.2,Custer Christine M.3,Ekman Drew R.4,Hummel Stephanie L.5,Kimbrough Kimani L.6,Schoenfuss Heiko L.7ORCID,Villeneuve Daniel L.1ORCID

Affiliation:

1. Great Lakes Toxicology and Ecology Division US Environmental Protection Agency Duluth Minnesota

2. Upper Midwest Water Science Center US Geological Survey Madison Wisconsin

3. Upper Midwest Environmental Sciences Center US Geological Survey La Crosse Wisconsin

4. Ecosystem Processes Division US Environmental Protection Agency Athens Georgia

5. Great Lakes Regional Office US Fish and Wildlife Service Bloomington Minnesota

6. National Oceanic and Atmospheric Administration Silver Spring Maryland USA

7. Aquatic Toxicology Laboratory St. Cloud State University St. Cloud Minnesota USA

Abstract

AbstractAssessing the ecological risk of contaminants in the field typically involves consideration of a complex mixture of compounds which may or may not be detected via instrumental analyses. Further, there are insufficient data to predict the potential biological effects of many detected compounds, leading to their being characterized as contaminants of emerging concern (CECs). Over the past several years, advances in chemistry, toxicology, and bioinformatics have resulted in a variety of concepts and tools that can enhance the pragmatic assessment of the ecological risk of CECs. The present Focus article describes a 10+‐ year multiagency effort supported through the U.S. Great Lakes Restoration Initiative to assess the occurrence and implications of CECs in the North American Great Lakes. State‐of‐the‐science methods and models were used to evaluate more than 700 sites in about approximately 200 tributaries across lakes Ontario, Erie, Huron, Michigan, and Superior, sometimes on multiple occasions. Studies featured measurement of up to 500 different target analytes in different environmental matrices, coupled with evaluation of biological effects in resident species, animals from in situ and laboratory exposures, and in vitro systems. Experimental taxa included birds, fish, and a variety of invertebrates, and measured endpoints ranged from molecular to apical responses. Data were integrated and evaluated using a diversity of curated knowledgebases and models with the goal of producing actionable insights for risk assessors and managers charged with evaluating and mitigating the effects of CECs in the Great Lakes. This overview is based on research and data captured in approximately about 90 peer‐reviewed journal articles and reports, including approximately about 30 appearing in a virtual issue comprised of highlighted papers published in Environmental Toxicology and Chemistry or Integrated Environmental Assessment and Management. Environ Toxicol Chem 2023;42:2506–2518. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3