Affiliation:
1. National Center for Photovoltaics National Renewable Energy Laboratory Golden CO 80401 USA
2. SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
Abstract
AbstractThe direct current bias for photovoltaic (PV) modules interconnected in series‐strings may include both high voltage negative (“HV−”) and positive (“HV+”) polarity with respect to the electrical ground. Multiple degradation modes, resulting in quantifiable optical loss, were found to occur during HV−/HV+ sequential stress, including corrosion of the external glass surface, encapsulant delamination (at its interfaces with the glass and the PV cell), internal haze formation (resulting from a chemical interaction between the glass and the encapsulant), corrosion and migration of the gridlines, and corrosion of the silicon nitride (SixNy) antireflective coating on the cell. The effects of these separate modes were examined using monolithic (e.g., glass or PV cell) and laminated‐coupon (glass/encapsulant/glass or glass/encapsulant/cell/encapsulant/backsheet) specimens. Characterizations during and after unbiased accelerated testing at 85°C/85% relative humidity included spectrophotometry, optical microscopy, electron microscopy, and ellipsometry. For some module components (i.e., the glass and the SixNy coating), the optical performance was determined through iterative analysis of empirical measurements. Concentrating on just their spectral effect, a novel model was then developed to estimate the transfer of light to the PV cell and the return of light from the PV module with simultaneous degradation mechanisms, which was compared with a mini‐module previously subjected to HV−/HV+ stress. The model suggests that one third of the current loss observed for the mini‐module can be attributed to the optical degradation of the packaging materials. The dominant degradation modes include encapsulant delamination and corrosion of the SixNy coating. Recommendations are given so that the optical model may be improved relative to accelerated testing and validated relative to field aging.
Funder
U.S. Department of Energy
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献