Design and analyses of web scraping on burstable virtual machines

Author:

Drummond Lúcia Maria A.1,Andrade Luciano1,Muniz Pedro de Brito1,Pereira Matheus Marotti1,Silva Thiago do Prado1,Teylo Luan12ORCID

Affiliation:

1. Instituto de Computação Universidade Federal Fluminense (UFF) Niterói Brazil

2. INRIA Bordeaux France

Abstract

SummaryWeb scraping is a widely used technique for decision‐making, collecting, and structuring public data from the internet. As the volume of data continues to grow, the need for more efficient methods of data extraction becomes crucial. This article introduces a novel web scraping framework that utilizes Burstable virtual machines (VMs) on Amazon Web Services with the objective of reducing the monetary cost of execution while ensuring compliance with service level agreements (SLAs). To achieve this, the framework utilizes a combination of fixed and temporary Burstable VMs in a mixed cluster, which can be elastically scaled up to fulfill the SLA and scaled down to minimize monetary costs. Two strategies for handling VM allocation are proposed and evaluated: (i) a queue and SLA‐based strategy that employs queue size information and SLA criteria to determine the required number of VMs for the current scraping requests, and (ii) a credit‐based strategy that incorporates information about Burstable VM credits to effectively manage instance creation and termination. Experimental tests show that the proposed framework meets the defined SLA while achieving cost reductions of up to 74% compared to an approach that executes on fixed‐size clusters of Burstable instances.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

Reference18 articles.

1. Cloud Based Web Scraping for Big Data Applications

2. ServicesAW.Burstable performance instances. Accessed May 2022.https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable‐performance‐instances.html

3. CloudO.Burstable instances. Accessed August 2023.https://docs.oracle.com/en‐us/iaas/Content/Compute/References/burstable‐instances.htm

4. Using Burstable Instances in the Public Cloud

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3