Identification and expression of strigolactone biosynthesis and signaling genes and the in vitro effects of strigolactones in olive (Olea europaea L.)

Author:

Özbilen Aslıhan1ORCID,Sezer Fatih2ORCID,Taşkin Kemal Melih2ORCID

Affiliation:

1. Department of Biology Canakkale Onsekiz Mart University Canakkale Turkey

2. Department of Molecular Biology and Genetics Canakkale Onsekiz Mart University Canakkale Turkey

Abstract

AbstractStrigolactones (SLs), synthesized in plant roots, play a dual role in modulating plant growth and development, and in inducing the germination of parasitic plant seeds and arbuscular mycorrhizal fungi in the rhizosphere. As phytohormones, SLs are crucial in regulating branching and shaping plant architecture. Despite the significant impact of branching strategies on the yield performance of fruit crops, limited research has been conducted on SLs in these crops. In our study, we identified the transcript sequences of SL biosynthesis and signaling genes in olive (Olea europaea L.) using rapid amplification of cDNA ends. We predicted the corresponding protein sequences, analyzed their characteristics, and conducted molecular docking with bioinformatics tools. Furthermore, we quantified the expression levels of these genes in various tissues using quantitative real‐time PCR. Our findings demonstrate the predominant expression of SL biosynthesis and signaling genes (OeD27, OeMAX3, OeMAX4, OeMAX1, OeD14, and OeMAX2) in roots and lateral buds, highlighting their importance in branching. Treatment with rac‐GR24, an SL analog, enhanced the germination frequency of olive seeds in vitro compared with untreated embryos. Conversely, inhibition of SL biosynthesis with TIS108 increased lateral bud formation in a hard‐to‐root cultivar, underscoring the role of SLs as phytohormones in olives. These results suggest that modifying SL biosynthesis and signaling pathways could offer novel approaches for olive breeding, with potential applicability to other fruit crops.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3