A Toxicokinetic–Toxicodynamic Modeling Workflow Assessing the Quality of Input Mortality Data

Author:

Bauer Barbara1,Singer Alexander1,Gao Zhenglei2,Jakoby Oliver1,Witt Johannes2,Preuss Thomas2ORCID,Gergs André2

Affiliation:

1. RIFCON Hirschberg Germany

2. Crop Science Division Bayer Monheim Germany

Abstract

AbstractToxicokinetic–toxicodynamic (TKTD) models simulate organismal uptake and elimination of a substance (TK) and its effects on the organism (TD). The Reduced General Unified Threshold model of Survival (GUTS‐RED) is a TKTD modeling framework that is well established for aquatic risk assessment to simulate effects on survival. The TKTD models are applied in three steps: parameterization based on experimental data (calibration), comparing predictions with independent data (validation), and prediction of endpoints under environmental scenarios. Despite a clear understanding of the sensitivity of GUTS‐RED predictions to the model parameters, the influence of the input data on the quality of GUTS‐RED calibration and validation has not been systematically explored. We analyzed the performance of GUTS‐RED calibration and validation based on a unique, comprehensive data set, covering different types of substances, exposure patterns, and aquatic animal species taxa that are regularly used for risk assessment of plant protection products. We developed a software code to automatically calibrate and validate GUTS‐RED against survival measurements from 59 toxicity tests and to calculate selected model evaluation metrics. To assess whether specific survival data sets were better suited for calibration or validation, we applied a design in which all possible combinations of studies for the same species–substance combination are used for calibration and validation. We found that uncertainty of calibrated parameters was lower when the full range of effects (i.e., from high survival to high mortality) was covered by input data. Increasing the number of toxicity studies used for calibration further decreased parameter uncertainty. Including data from both acute and chronic studies as well as studies under pulsed and constant exposure in model calibrations improved model predictions on different types of validation data. Using our results, we derived a workflow, including recommendations for the sequence of modeling steps from the selection of input data to a final judgment on the suitability of GUTS‐RED for the data set. Environ Toxicol Chem 2024;43:197–210. © 2023 Bayer AG and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Funder

Bayer

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3