Deubiquitinase PSMD14 promotes tumorigenicity of glioblastoma by deubiquitinating and stabilizing β‐catenin

Author:

Wang Yang1ORCID,Liu Yu1,Ma Chongchen12,Liu Cen1,Tang Qikai3,Wang Zhangjie1,Lu Jiacheng4,Chen Zhengxin1,Wang Huibo1

Affiliation:

1. Department of Neurosurgery the First Affiliated Hospital of Nanjing Medical University Nanjing China

2. Huaian Hospital of Huaian City, Huaian Cancer Hospital China

3. Department of Neurosurgery Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing China

4. Department of Neurosurgery Jiangsu Provincial Hospital of Traditional Chinese Medicine Nanjing China

Abstract

AbstractThe deubiquitinating enzyme 26S proteasome non‐ATPase regulatory subunit 14 (PSMD14), a member of the JAB1/MPN/Mov34 metalloenzyme (JAMM) family, has been shown to function as an oncogene in various human cancers. However, the function of PSMD14 in glioma and the underlying mechanism remain unclear. In this study, our findings reveal a dramatic upregulation of PSMD14 in GBMs, which is associated with poor survival outcomes. Knocking down PSMD14 is associated with decreased proliferation and invasion of GBM cells in vitro and inhibited tumor growth in a xenograft mouse model. Mechanistically, PSMD14 directly interacts with β‐catenin, leading to a decrease in the K48‐linked ubiquitination of β‐catenin and subsequent β‐catenin stabilization. Increased β‐catenin expression significantly reverses the inhibitory effects of PSMD14 knockdown on the migration, invasion, and tumor growth of GBM cells. Moreover, we observed a significant correlation between PSMD14 and β‐catenin expression in human GBM samples. In summary, our results reveal that PSMD14 is a crucial deubiquitinase that is responsible for stabilizing the β‐catenin protein, highlighting its potential for use as a therapeutic target for GBM.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3