Synergistic photoelectrocatalytic degradation of tetracycline using a novel Z‐scheme Zn0.5Ni0.5Fe2O4/SiNWs heterostructure: Towards sustainable antibiotic remediation

Author:

Dong Yang1,Wang Bo12,Xie Dongzhou1,Lv Jun13,Cui Jiewu13,Bao Zhiyong13,Xu Guangqing13,Shen Wangqiang134ORCID

Affiliation:

1. School of Materials Science and Engineering Hefei University of Technology Hefei China

2. National Laboratory of Solid State Microstructures and Department of Physics Nanjing University Nanjing China

3. Key Laboratory of Advanced Functional Materials and Devices of Anhui Province Hefei University of Technology Hefei China

4. State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou China

Abstract

AbstractPhotoelectrocatalytic technology (PEC) is an emerging green and sustainable technology for treating antibiotic wastewater. However, its effectiveness is limited by the recombination of photogenerated carriers. To address this issue, the Fenton reaction, an advanced oxidation process, can be coupled with PEC technology to enhance the oxidative degradation of antibiotic wastewater. This research involved creating a Zn0.5Ni0.5Fe2O4/silicon nanowires (SiNWs) Z‐type heterojunction through the spin coating technique, which was then utilized in the PEC coupled Fenton reaction to break down antibiotic wastewater. The inherent electric field and the voltage applied hastened the segregation of e and h+ within the system. These advantages make the Zn0.5Ni0.5Fe2O4/SiNWs heterojunction highly efficient in removing various antibiotics, including tetracycline (TC), ciprofloxacin (CIP), amoxicillin (AMX), and levofloxacin (LVX). In particular, the Zn0.5Ni0.5Fe2O4/SiNWs heterojunction demonstrated an 82.21% degradation efficiency for TC, exhibiting a kinetic constant (k) of 0.02688 min−1, a rate 2.82 times (4.80 times) greater than that of SiNWs. Experimental findings reveal that Zn0.5Ni0.5Fe2O4/SiNWs exhibit superior light absorption properties and a reduced rate of photogenerated charge recombination. The doping of Zn0.5Ni0.5Fe2O4 effectively improves the catalytic performance of SiNWs. This research offers fresh insights into researching PEC‐coupled Fenton reaction methods for the degradation of antibiotics and paves the way for advancing the creation of more potent photoelectrochemical catalysts in the future.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3