Radiomics approach to distinguish between well differentiated liposarcomas and lipomas on MRI

Author:

Vos M12ORCID,Starmans M P A34ORCID,Timbergen M J M12,van der Voort S R34,Padmos G A3,Kessels W345,Niessen W J345,van Leenders G J L H6,Grünhagen D J2,Sleijfer S1,Verhoef C2,Klein S34,Visser J J3

Affiliation:

1. Department of Medical, Erasmus MC Cancer Institute, Rotterdam, the Netherlands

2. Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands

3. Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands

4. Department of Medical Informatics, Erasmus MC, Rotterdam, the Netherlands

5. Department of Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands

6. Department of Pathology, Erasmus MC, Rotterdam, the Netherlands

Abstract

Abstract Background Well differentiated liposarcoma (WDLPS) can be difficult to distinguish from lipoma. Currently, this distinction is made by testing for MDM2 amplification, which requires a biopsy. The aim of this study was to develop a noninvasive method to predict MDM2 amplification status using radiomics features derived from MRI. Methods Patients with an MDM2-negative lipoma or MDM2-positive WDLPS and a pretreatment T1-weighted MRI scan who were referred to Erasmus MC between 2009 and 2018 were included. When available, other MRI sequences were included in the radiomics analysis. Features describing intensity, shape and texture were extracted from the tumour region. Classification was performed using various machine learning approaches. Evaluation was performed through a 100 times random-split cross-validation. The performance of the models was compared with the performance of three expert radiologists. Results The data set included 116 tumours (58 patients with lipoma, 58 with WDLPS) and originated from 41 different MRI scanners, resulting in wide heterogeneity in imaging hardware and acquisition protocols. The radiomics model based on T1 imaging features alone resulted in a mean area under the curve (AUC) of 0·83, sensitivity of 0·68 and specificity of 0·84. Adding the T2-weighted imaging features in an explorative analysis improved the model to a mean AUC of 0·89, sensitivity of 0·74 and specificity of 0·88. The three radiologists scored an AUC of 0·74 and 0·72 and 0·61 respectively; a sensitivity of 0·74, 0·91 and 0·64; and a specificity of 0·55, 0·36 and 0·59. Conclusion Radiomics is a promising, non-invasive method for differentiating between WDLPS and lipoma, outperforming the scores of the radiologists. Further optimization and validation is needed before introduction into clinical practice.

Funder

Stichting Coolsingel

Stichting voor de Technische Wetenschappen

Publisher

Oxford University Press (OUP)

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3