Logjams in a mountain stream network: Patterns, biogeomorphic associations, and anthropogenic impacts

Author:

Cienciala Piotr1ORCID,Nelson Andrew D.2ORCID,Haas Andrew D.3

Affiliation:

1. Department of Geography and GIS University of Illinois at Urbana‐Champaign Urbana Illinois USA

2. Northwest Hydraulic Consultants Bellingham Washington USA

3. Seattle City Light Seattle Washington USA

Abstract

AbstractLogjams, in‐channel accumulations of downed wood, play important roles governing biophysical processes in river ecosystems. In this study conducted in the mountainous inland Pacific Northwest, we leveraged a basin‐scale inventory to carry out a comprehensive analysis of logjam frequency, volume, and their associations with a suite of biophysical landscape characteristics and anthropogenic influences. We complemented this analysis with one that relies on the concept of process domains. We found that logjam frequency increased with drainage area up to ~10–30 km2 and declined thereafter, while the mean jam volume steadily increased downstream up to the area of >300 km2. Combined, these variables yielded a nonlinear downstream pattern of large wood storage in jams, peaking at drainage areas of ~10–100 km2. Logjam characteristics were associated with multiple predictors, used as proxies for biogeomorphic processes relevant for large wood supply and redistribution: bank erosion, landslides, avulsions, wood availability in riparian forest, and wood transport. Additionally, anthropogenic disturbances were inferred to strongly influence logjam‐forming processes in the study basin. A riprapped forest road disrupted a process chain responsible for large wood supply, wherein erosion undercuts slope toe, ultimately triggering landslides. Timber harvest influenced large wood supply by reducing forest biomass. Overall, these findings contribute to improved understanding of logjams: they provide insight into the complex suite of interacting natural and anthropogenic factors which, by regulating large wood inputs and redistribution, generate a basin‐scale pattern in jam frequency and volume. We believe that our study will be useful in informing river management and restoration practices.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3