Stability and thermodynamic property of TiO2/R141b nanorefrigerants by multi‐objective optimization

Author:

Xing Ming1ORCID,Zhai Yuling1

Affiliation:

1. Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education Kunming University of Science and Technology Kunming 650093 China

Abstract

AbstractUtilizing nanorefrigerants as working fluids can significantly enhance the energy efficiency of low‐temperature waste heat recovery systems (≤ 50°C). Refrigerants with low viscosity and density require a substantial amount of surfactant to maintain a stable suspension of nanoparticles. However, the excessive use of surfactants, which have a notably low thermal conductivity, could lead to foam generation and reduce heat transfer coefficient. High viscosity lubricating oils with small amount of surfactant can prolong the stable suspension time and produce repulsive force. Therefore, a new combination of them improves the stability of TiO2/R141b nanorefrigerants. Additionally, viscosity and thermal conductivity of the nanorefrigerants were optimized using an implementation of a modified non‐dominated sorting genetic algorithm (NSGA‐II). The results show that adding lubricating oil inhibits aggregation of the nanoparticles leading to a stable suspension for more than 6 h at volumetric mixing ratios (lubricating oil: refrigerant) greater than 1:30. The best dispersion stability was achieved at surfactant polyvinyl pyrrolidone (PVP) mass ratio of 0.5, and the average absorbance value was increased by 65.45%. Compared with pure refrigerants, the thermal conductivity of TiO2/R141b (0.15 vol.%) nanorefrigerant was enhanced by up to 12.59% under the optimum mixing ratio. Moreover, the studied nanorefrigerants exhibited shear thickening behavior throughout the studied shear rate range, with increased non‐Newtonianization with decreasing temperature. Finally, the Pareto points were divided into three representative groups based on thermal conductivity and viscosity. These findings suggest enhanced high heat transfer efficiency with pumping power of nanorefrigerant in the waste heat recovery systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3