Affiliation:
1. Research Center of Flexible Sensing Materials and Devices school of Applied Physics, Wuyi University Jiangmen China 529020
2. Department of Intelligent Manufacturing Wuyi University Jiangmen China 529020
3. Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou China 510640
Abstract
Wearable electronics represented by flexible displays and flexible sensors have been attracting enormous attention due to portability, miniaturization and low power consumption. Due to the dramatic increase in the number of display and sensing units, the power consumption and accuracy of the devices are facing great challenges. Active‐matrix thin‐film transistor (TFT) backplanes can effectively reduce signal crosstalk and power consumption of wearable electronics. For TFT devices, the gate insulation layer is one of key factors affecting the device performance such as device mobility, operating voltage, and bias stability, etc. High quality of solution‐processed oxide dielectric films usually are obtained at a high temperature (>400 °C), being a challenge for compatibility with flexible plastic substrates. In this work, low‐temperature annealing processes (the electric oven (EO) and deep ultraviolet (DUV) processing) of high‐k zirconia dielectric films was investigated. Compared to the thermal annealing process, the EO or DUV processing‐annealing process could obtain an approximate dielectric properties with that of thermal annealing process. The EO and DUV processing could effectively promoted the MO framework and the elimination of oxygen defects in the spin‐coating films. DUV processing ZrO2 film annealed at 150 °C exhibited an excellent properties including a large capacitance of 220 nF/cm2 and low leakage current of ~10‐7 A/cm2. These data suggest that combining low‐temperature annealing with EO and DUV irradiation holds great promise for the rapid, low‐temperature production of high‐quality and flexible oxide electronic devices.