Metrics for software process simulation modeling

Author:

Liu Bohan1ORCID,Zhang He1,Dong Liming1,Wang Zhiqi1,Li Shanshan1

Affiliation:

1. State Key Laboratory of Novel Software Technology, Software Institute Nanjing University Nanjing Jiangsu China

Abstract

AbstractSoftware process simulation (SPS) has become an effective tool for software process management and improvement. However, its adoption in industry is less than what the research community expected due to the burden of measurement cost and the high demand for domain knowledge. The difficulty of extracting appropriate metrics with real data from process enactment is one of the great challenges. We aim to provide evidence‐based support of the process metrics for software process (simulation) modeling. A systematic literature review was performed by extending our previous review series to draw a comprehensive understanding of the metrics for process modeling following our proposed ontology of metrics in SPS. We identify 131 process modeling studies that collectively involve 1975 raw metrics and classified them into 21 categories using the coding technique. We found product and process external metrics are not used frequently in SPS modeling while resource external metrics are widely used. We analyze the causal relationships between metrics. We find that the models exhibit significant diversity, as no pairwise relationship between metrics accounts for more than 10% SPS models. We identify 17 data issues may encounter in measurement and 10 coping strategies. The results of this study provide process modelers with an evidence‐based reference of the identification and the use of metrics in SPS modeling and further contribute to the development of the body of knowledge on software metrics in the context of process modeling. Furthermore, this study is not limited to process simulation but can be extended to software process modeling, in general. Taking simulation metrics as standards and references can further motivate and guide software developers to improve the collection, governance, and application of process data in practice.

Funder

National Natural Science Foundation of China

Research Council of Norway

Jiangsu Provincial Key Research and Development Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3