Data‐driven modeling and prediction on hysteresis behavior of flexure RC columns using deep learning networks

Author:

Guo Jiangmeng12,Wang Luji1,Shan Jiazeng13ORCID

Affiliation:

1. Department of Disaster Mitigation for Structures Tongji University Shanghai China

2. Department of Civil and Environmental Engineering Stanford University Stanford California USA

3. Shanghai Engineering Research Center for Resilient Cities and Intelligent Disaster Mitigation Shanghai China

Abstract

SummaryHysteresis behavior of structural components has been one of the research focus for the structural engineering community for decades, comprehensively determines the structural performance and safety, and plays an important role in structural disaster mitigation. It is of great significance to continuously monitor structural responses and accurately characterize structural hysteresis. Currently, the nonlinear properties of real‐world structural components cannot be obtained before its failure. Thus, a historical database is collected firstly. Then, a data‐driven analysis method is proposed for predicting hysteresis behaviors of reinforced concrete (RC) columns. A bidirectional LSTM (BLSTM) network is developed to model and predict hysteresis curves. The data with unfixed lengths are specially processed to simultaneously guarantee a uniform size and avoid data loss, and the clipping layers are inserted in the model to clip off inferior predictions and improve the accuracy. This methodology is systematically studied and validated by employing a sythetic database generated by numerical simulation and the full‐scale experiment database named PEER database. Result shows that proposed BLSTM can predict the hysteresis curves of the RC components with acceptable accuracy and robustness. Moreover, the interpretability analysis is performed on identifying the learning and prediction principle of the BLSTM model on hysteresis prediction and its accuracy variation under different model architectures.

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Publisher

Wiley

Subject

Building and Construction,Architecture,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3