Mutational analysis reveals the importance of residues of the access tunnel inhibitor site to human P‐glycoprotein (ABCB1)‐mediated transport

Author:

Salazar Paula B.1,Murakami Megumi1,Ranganathan Nandhini1,Durell Stewart R.1,Ambudkar Suresh V.1ORCID

Affiliation:

1. Laboratory of Cell Biology, Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland USA

Abstract

AbstractHuman P‐glycoprotein (P‐gp) utilizes energy from ATP hydrolysis for the efflux of chemically dissimilar amphipathic small molecules and plays an important role in the development of resistance to chemotherapeutic agents in most cancers. Efforts to overcome drug resistance have focused on inhibiting P‐gp‐mediated drug efflux. Understanding the features distinguishing P‐gp inhibitors from substrates is critical. Cryo‐electron microscopy has revealed distinct binding patterns, emphasizing the role of the L‐site or access tunnel in inhibition. We substituted 5–9 residues of the L‐site with alanine to investigate whether the binding of a second inhibitor molecule to the L‐site is required for inhibiting drug efflux. We reveal, for the first time, that mutations in the L‐site affect the drug efflux activity of P‐gp, despite their distance from the substrate‐binding pocket (SBP). Surprisingly, after the mutations were introduced, inhibitors such as tariquidar and zosuquidar still inhibited drug efflux by mutant P‐gps. Communication between the transmembrane helices (TMHs) and nucleotide‐binding domains (NBDs) was evaluated using the ATPase assay, revealing distinct modulation patterns by inhibitors for the mutants, with zosuquidar exhibiting substrate‐like stimulation of ATPase. Furthermore, L‐site mutations abolished ATP‐dependent thermal stabilization. In silico molecular docking studies corroborated the altered inhibitor binding due to mutations in the L‐site residues, shedding light on their critical role in substrate transport and inhibitor interactions with P‐gp. These findings suggest that inhibitors bind either to the SBP alone, and/or to alternate site(s) when the L‐site is disabled by mutagenesis.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3