Affiliation:
1. Jiangsu Key Laboratory of Electrochemical Energy‐Storage Technologies, College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
Abstract
Lithium metal batteries are emerging as a strong candidate in the future energy storage market due to its extremely high energy density. However, the uncontrollable lithium dendrites and volume change of lithium metal anodes severely hinder its application. In this work, the porous Cu skeleton modified with Cu6Sn5 layer is prepared via dealloying brass foil following a facile electroless process. The porous Cu skeleton with large specific surface area and high electronic conductivity effectively reduces the local current density. The Cu6Sn5 can react with lithium during the discharge process to form lithiophilic Li7Sn2 in situ to promote Li‐ions transport and reduce the nucleation energy barrier of lithium to guide the uniform lithium deposition. Therefore, more than 300 cycles at 1 mA cm−2 are achieved in the half‐cell with an average Coulombic efficiency of 97.5%. The symmetric cell shows a superior cycle life of more than 1000 h at 1 mA cm−2 with a small average hysteresis voltage of 16 mV. When coupled with LiFePO4 cathode, the full cell also maintains excellent cycling and rate performance.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Waste Management and Disposal,Environmental Science (miscellaneous),Water Science and Technology,General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献