In Situ Reaction Fabrication of a Mixed‐Ion/Electron‐Conducting Skeleton Toward Stable Lithium Metal Anodes

Author:

He Juhong1,Ai Liufeng1,Yao Tengyu1,Xu Zhenming1,Chen Duo1,Zhang Xiaogang1ORCID,Shen Laifa1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Electrochemical Energy‐Storage Technologies, College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China

Abstract

Lithium metal batteries are emerging as a strong candidate in the future energy storage market due to its extremely high energy density. However, the uncontrollable lithium dendrites and volume change of lithium metal anodes severely hinder its application. In this work, the porous Cu skeleton modified with Cu6Sn5 layer is prepared via dealloying brass foil following a facile electroless process. The porous Cu skeleton with large specific surface area and high electronic conductivity effectively reduces the local current density. The Cu6Sn5 can react with lithium during the discharge process to form lithiophilic Li7Sn2 in situ to promote Li‐ions transport and reduce the nucleation energy barrier of lithium to guide the uniform lithium deposition. Therefore, more than 300 cycles at 1 mA cm−2 are achieved in the half‐cell with an average Coulombic efficiency of 97.5%. The symmetric cell shows a superior cycle life of more than 1000 h at 1 mA cm−2 with a small average hysteresis voltage of 16 mV. When coupled with LiFePO4 cathode, the full cell also maintains excellent cycling and rate performance.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Energy (miscellaneous),Waste Management and Disposal,Environmental Science (miscellaneous),Water Science and Technology,General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3