Affiliation:
1. School of Materials Science and Engineering Tianjin University Tianjin 300350 China
2. Key Laboratory of Materials Processing and Mold, Ministry of Education Zhengzhou University Zhengzhou 450002 Henan China
Abstract
Photoisomerization‐induced phase change are important for co‐harvesting the latent heat and isomerization energy of azobenzene molecules. Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization. This article reports two series of asymmetrically alkyl‐grafted azobenzene (Azo‐g), with and without a methyl group, that have an optically triggered phase change. Three exothermic modes were designed to utilize crystallization enthalpy (∆Hc) and photothermal (isomerization) energy (∆Hp) at different temperatures determined by the crystallization. Azo‐g has high heat output (275–303 J g−1) by synchronously releasing ∆Hc and ∆Hp over a wide temperature range (−79 °C to 25 °C). We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6 °C at a temperature of −8 °C. The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Waste Management and Disposal,Environmental Science (miscellaneous),Water Science and Technology,General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献