Dual Additives for Stabilizing Li Deposition and SEI Formation in Anode‐Free Li‐Metal Batteries

Author:

Wu Baolin12,Chen Chunguang34,Danilov Dmitri L.15,Chen Zhiqiang5,Jiang Ming6,Eichel Rüdiger‐A.12,Notten Peter H. L.157ORCID

Affiliation:

1. Forschungszentrum Jülich (IEK‐9) D‐52425 Jülich Germany

2. RWTH Aachen University D‐52074 Aachen Germany

3. LNM, Institute of Mechanics Chinese Academy of Sciences Beijing 100190 China

4. School of Engineering Sciences University of Chinese Academy of Sciences Beijing 100049 China

5. Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands

6. Institute of Carbon Neutrality and New Energy, School of Electronics and Information Hangzhou Dianzi University 310018 Hangzhou China

7. University of Technology Sydney Broadway Sydney NSW 2007 Australia

Abstract

Anode‐free Li‐metal batteries are of significant interest to energy storage industries due to their intrinsically high energy. However, the accumulative Li dendrites and dead Li continuously consume active Li during cycling. That results in a short lifetime and low Coulombic efficiency of anode‐free Li‐metal batteries. Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase (SEI) stability for anode‐free Li‐metal batteries. Herein, we reveal that introducing dual additives, composed of LiAsF6 and fluoroethylene carbonate, into a low‐cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC||Cu anode‐free Li‐metal batteries. The NMC||Cu anode‐free Li‐metal batteries with the dual additives exhibit a capacity retention of about 75% after 50 cycles, much higher than those with bare electrolytes (35%). The average Coulombic efficiency of the NMC||Cu anode‐free Li‐metal batteries with additives can maintain 98.3% over 100 cycles. In contrast, the average Coulombic efficiency without additives rapidly decline to 97% after only 50 cycles. In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition. The dual additives significantly suppress the Li dendrite growth, enabling stable SEI formation on anode and cathode surfaces. Our results provide a broad view of developing low‐cost and high‐effective functional electrolytes for high‐energy and long‐life anode‐free Li‐metal batteries.

Funder

China Scholarship Council

Publisher

Wiley

Subject

Energy (miscellaneous),Waste Management and Disposal,Environmental Science (miscellaneous),Water Science and Technology,General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3