Affiliation:
1. School of Mechanical & Automotive Engineering South China University of Technology Guangzhou 510640 China
2. School of Environment and Energy South China University of Technology Guangzhou 510006 China
3. School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510006 China
Abstract
Printed micro‐supercapacitors (MSCs) have shown broad prospect in flexible and wearable electronics. Most of previous studies focused on printing the electrochemically active materials paying less attention to other key components like current collectors and electrolytes. This study presents an all‐printing strategy to fabricate in‐plane flexible and substrate‐free MSCs with hierarchical encapsulation. This new type of “all‐in‐one” MSC is constructed by encapsulating the in‐plane interdigital current collectors and electrodes within the polyvinyl‐alcohol‐based hydrogel electrolyte via sequential printing. The bottom electrolyte layer of this fully printed MSCs helps protect the device from the limitation of conventional substrate, showing excellent flexibility. The MSCs maintain a high capacitance retention of 96.84% even in a completely folded state. An optimal electrochemical performance can be achieved by providing ample and shorter transport paths for ions. The MSCs using commercial activated carbon as the active material are endowed with a high specific areal capacitance of 1892.90 mF cm−2 at a current density of 0.3 mA cm−2, and an outstanding volumetric energy density of 9.20 mWh cm−3 at a volumetric power density of 6.89 mW cm−3. For demonstration, a thermo‐hygrometer is stably powered by five MSCs which are connected in series and wrapped onto a glass rod. This low‐cost and versatile all‐printing strategy is believed to diversify the application fields of MSCs with high capacitance and excellent flexibility.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Waste Management and Disposal,Environmental Science (miscellaneous),Water Science and Technology,General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献