Surface Deposition of Ni(OH)2 and Lattice Distortion Induce the Electrochromic Performance Decay of NiO Films in Alkaline Electrolyte

Author:

Xu Kejun1ORCID,Wang Liuying1,Ge Chaoqun1,Wang Long1,Wang Bin1,Wang Zhuo2ORCID,Zhang Chuanwei3,Liu Gu1

Affiliation:

1. Xi'an Research Institute of High Technology Xi'an Shaanxi 710025 China

2. School of Material Science and Engineering Zhengzhou University Zhengzhou 450001 China

3. School of Mechanical Engineering Xi'an University of Science and Technology Xi'an Shaanxi 710054 China

Abstract

NiO, an anodic electrochromic material, has applications in energy‐saving windows, intelligent displays, and military camouflage. However, its electrochromic mechanism and reasons for its performance degradation in alkaline aqueous electrolytes are complex and poorly understood, making it challenging to improve NiO thin films. We studied the phases and electrochemical characteristics of NiO films in different states (initial, colored, bleached and after 8000 cycles) and identified three main reasons for performance degradation. First, Ni(OH)2 is generated during electrochromic cycling and deposited on the NiO film surface, gradually yielding a NiO@Ni(OH)2 core–shell structure, isolating the internal NiO film from the electrolyte, and preventing ion transfer. Second, the core–shell structure causes the mode of electrical conduction to change from first‐ to second‐order conduction, reducing the efficiency of ion transfer to the surface Ni(OH)2 layer. Third, Ni(OH)2 and NiOOH, which have similar crystal structures but different b‐axis lattice parameters, are formed during electrochromic cycling, and large volume changes in the unit cell reduce the structural stability of the thin film. Finally, we clarified the mechanism of electrochromic performance degradation of NiO films in alkaline aqueous electrolytes and provide a route to activation of NiO films, which will promote the development of electrochromic technology.

Publisher

Wiley

Subject

Energy (miscellaneous),Waste Management and Disposal,Environmental Science (miscellaneous),Water Science and Technology,General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3