Porous Indium Nanocrystals on Conductive Carbon Nanotube Networks for High‐Performance CO2‐to‐Formate Electrocatalytic Conversion

Author:

Xiao Liangping1,Zhou Rusen23ORCID,Zhang Tianqi3ORCID,Wang Xiaoxiang2,Zhou Renwu3ORCID,Cullen Patrick J.3,Ostrikov Kostya (Ken)2

Affiliation:

1. Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Jiujiang Research Institute Xiamen University Xiamen 361005 China

2. School of Chemistry and Physics, QUT Centre for Materials Science and QUT Centre for a Waste‐Free World Queensland University of Technology (QUT) Brisbane QLD 4000 Australia

3. School of Chemical and Biomolecular Engineering University of Sydney Sydney NSW 2006 Australia

Abstract

Ever‐increasing emissions of anthropogenic carbon dioxide (CO2) cause global environmental and climate challenges. Inspired by biological photosynthesis, developing effective strategies NeuNlto up‐cycle CO2 into high‐value organics is crucial. Electrochemical CO2 reduction reaction (CO2RR) is highly promising to convert CO2 into economically viable carbon‐based chemicals or fuels under mild process conditions. Herein, mesoporous indium supported on multi‐walled carbon nanotubes (mp‐In@MWCNTs) is synthesized via a facile wet chemical method. The mp‐In@MWCNTs electrocatalysts exhibit high CO2RR performance in reducing CO2 into formate. An outstanding activity (current density −78.5 mA cm−2), high conversion efficiency (Faradaic efficiency of formate over 90%), and persistent stability (~30 h) for selective CO2‐to‐formate conversion are observed. The outstanding CO2RR process performance is attributed to the unique structures with mesoporous surfaces and a conductive network, which promote the adsorption and desorption of reactants and intermediates while improving electron transfer. These findings provide guiding principles for synthesizing conductive metal‐based electrocatalysts for high‐performance CO2 conversion.

Publisher

Wiley

Subject

Energy (miscellaneous),Waste Management and Disposal,Environmental Science (miscellaneous),Water Science and Technology,General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3