Synergetic Control of Li+ Transport Ability and Solid Electrolyte Interphase by Boron‐Rich Hexagonal Skeleton Structured All‐Solid‐State Polymer Electrolyte

Author:

Li Yanan1,Ma Shunchao2ORCID,Zhao Yuehua1,Chen Silin1,Xiao Tingting1,Yin Hongxing1,Song Huiyu1,Pan Xiumei1,Cong Lina1,Xie Haiming1ORCID

Affiliation:

1. Department of Chemistry, National & Local United Engineering Laboratory for Power Battery Northeast Normal University Changchun 130024 China

2. State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China

Abstract

High Li+ transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li+. However, such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase (SEI) formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition. Herein, a boron‐rich hexagonal polymer structured all‐solid‐state polymer electrolyte (BSPE+10% LiBOB) with regulated intermolecular interaction is proposed to trade off a high Li+ transference number against stable SEI properties. The Li+ transference number of the as‐prepared electrolyte is increased from 0.23 to 0.83 owing to the boron‐rich cross‐linker (BC) addition. More intriguingly, for the first time, the experiments combined with theoretical calculation results reveal that BOB anions have stronger interaction with B atoms in polymer chain than TFSI, which significantly induce the TFSI decomposition and consequently increase the amount of LiF and Li3N in the SEI layer. Eventually, a LiFePO4|BSPE+10% LiBOB|Li cell retains 96.7% after 400 cycles while the cell without BC‐resisted electrolyte only retains 40.8%. BSPE+10% LiBOB also facilitates stable electrochemical cycling of solid‐state Li‐S cells. This study blazes a new trail in controlling the Li+ transport ability and SEI properties, synergistically.

Publisher

Wiley

Subject

Energy (miscellaneous),Waste Management and Disposal,Environmental Science (miscellaneous),Water Science and Technology,General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3