Revealing the Role of Defect in 3D Graphene‐Based Photocatalytic Composite for Efficient Elimination of Antibiotic and Heavy Metal Combined Pollution

Author:

Wang Xin12ORCID,Zhang Jingzhe2,Wang Hui3,Liang Mengjun4,Wang Qiang5,Chen Fuming2ORCID

Affiliation:

1. Research Institute of Frontier Science Southwest Jiaotong University Chengdu 610031 China

2. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Electronics and Information Engineering South China Normal University Foshan 528225 China

3. School of Aeronautics Northwestern Polytechnical University Xi'an 710072 China

4. Hubei Key Laboratory for High‐Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System Hubei University of Technology Wuhan 430068 China

5. MOE Key Laboratory of Thermo‐Fluid Science and Engineering, School of Energy and Power Engineering Xi'an Jiaotong University Xi'an 710049 China

Abstract

Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites. However, the role of defects and the process mechanism are complicated and indefinable. Herein, TiO2/CN/3DG was fabricated and defects were introduced into the tripartite structure with separate O2 plasma treatment for the single component. We find that defect engineering can improve the photocatalytic activity, attributing to the increase of the contribution from h+ and OH. In contrast to TiO2/CN/3DG with a photocatalytic tetracycline removal rate of 75.2%, the removal rate of TC with D‐TiO2/CN/3DG has increased to 88.5%. Moreover, the reactive sites of tetracycline can be increased by adsorbing on the defective composites. The defect construction on TiO2 shows the advantages in tetracycline degradation and Cu2+ adsorption, but also suffers significant inhibition for the tetracycline degradation in a tetracycline/Cu2+ combined system. In contrast, the defect construction on graphene can achieve the cooperative removal of tetracycline and Cu2+. These findings can provide new insights into water treatment strategies with defect engineering.

Funder

Fundamental Research Funds for the Central Universities

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Energy (miscellaneous),Waste Management and Disposal,Environmental Science (miscellaneous),Water Science and Technology,General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3