CO2‐Induced Modulation of Si–O Bonds for Low Temperature Plastic Deformation of Amorphous Silica Nanoparticles with Enhanced Photoluminescence

Author:

Huang Kang1,Wu Wenzhuo1,Xu Song1,Yan Pengfei2,Wei Zhongming3,Xu Qun12ORCID

Affiliation:

1. Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450001 China

2. College of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China

3. State Key Laboratory of Superlattices and Microstructures Institute of Semiconductors Chinese Academy of Sciences Beijing 100083 China

Abstract

Modulation of Si–O bonds under mild conditions has been a challenging issue in the field of material science, which is critical to manufacture high‐performance silica‐based optical and photonic devices. Herein, we introduce a nondestructive technique to achieve Si–O bond rearrangement, leading to plastic deformation and photoluminescence enhancement of amorphous silica nanoparticles using supercritical carbon dioxides in EtOH/H2O solution under mild temperature. Specifically, plastic deformation is achieved by treating hollow mesoporous silica nanospheres using supercritical CO2 at 40 °C under 20 MPa. Experimental and theoretical studies revealed the critical role of supercritical CO2 in the plastic deformation process, which can be intercalated into the hollow mesoporous silica nanospheres with anisotropic stresses and induces the rearrangement of Si–O bonds and transformation of ring structures. This work suggests a novel approach to engineer high‐performance nano‐silica glass components for numerous optical and photonic devices under mild condition.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Energy (miscellaneous),Waste Management and Disposal,Environmental Science (miscellaneous),Water Science and Technology,General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3