Affiliation:
1. Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering Hubei University Wuhan 430062 China
2. School of Artificial Intelligence Hubei University Wuhan 430062 China
Abstract
Development of metal oxide semiconductors‐based methane sensors with good response and low power consumption is one of the major challenges to realize the real‐time monitoring of methane leakage. In this work, a self‐assembled mulberry‐like ZnO/SnO2 hierarchical structure is constructed by a two‐step hydrothermal method. The resultant sensor works at room temperature with excellent response of ~56.1% to 2000 ppm CH4 at 55% relative humidity. It is found that the strain induced at the ZnO/SnO2 interface greatly enhances the piezoelectric polarization on the ZnO surface and that the band bending results in the accumulation of chemically adsorbed ions close to the interface, leading to significant improvement in the sensing performance of the methane gas sensor at room temperature.
Funder
Department of Science and Technology, Hubei Provincial People's Government
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Waste Management and Disposal,Environmental Science (miscellaneous),Water Science and Technology,General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献