Virtual external stimulation promotes the transformation of the brain state from early mild cognitive impairment to health

Author:

Wang Weiping123ORCID,Wang Weiwei123,Zhao Haiyan4,Wang Zhen5,Luo Xiong123,Ouyang Jipeng6

Affiliation:

1. School of Computer and Communication Engineering University of Science and Technology Beijing Beijing China

2. Shunde Innovation School University of Science and Technology Beijing Shunde Guangdong China

3. Beijing Key Laboratory of Knowledge Engineering for Materials Science Beijing China

4. Department of Neurology Peking University Third Hospital Beijing China

5. The Center for Optical Imagery Analysis and Learning and School of Mechanical Engineering Northwestern Polytechnical University Xi'an Shaanxi China

6. Department of Neurology Shunde Hospital Southern Medical University Shunde Guangdong China

Abstract

AbstractNeurostimulation has emerged as a potential remedy for early mild cognitive impairment (EMCI). However, further exploration is needed on how external stimulation of brain regions promotes the transition of the brain state from EMCI to health and the selection of target locations. In this study, a functional magnetic resonance imaging dataset was used to evaluate the brain states of healthy individuals and patients with EMCI to explore the probabilistic metastable substate space, identifying abnormal manifestations of EMCI. Stimulation targets were then identified and stimulated to achieve complete controllability of the effective connection network for EMCI. A whole‐brain model successfully fitted the brain state of the patients with EMCI based on diffusion tensor imaging data. Based on this whole‐brain model, stimulation of the hippocampus, medial frontal gyrus, suboccipital gyrus, and fusiform gyrus can promote the transformation of the brain state from EMCI to health. The findings reveal the underlying brain mechanisms of cognitive decline in patients with EMCI and the stimulation targets of the neural mechanisms of EMCI restoration, which could help in designing more effective therapeutic interventions for EMCI.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3