Affiliation:
1. Chemical Engineering Department University of Puerto Rico‐Mayaguez Campus Mayagüez Puerto Rico USA
Abstract
AbstractIn this study, sulfonated poly(arylene ether sulfone) (SPAES) and sulfonated poly(arylene ether ketone) (SPAEK) were randomly synthesized, employing a presulfonation process. This presulfonation process resulted in a more controlled and reproducible sulfonation level. The respective polymers were prepared using 2,2‐Bis(4‐hydroxyphenyl) propane at 50% molar ratio, which also provided some membrane elasticity. The resulting polymers, each had 25% of the block containing the sulfonic domains (SPAES A 25 and SPAEK A 25). Better conductive membranes were achieved for the random sulfone polymers than for the random ketone polymers, with values, respectively, of 0.24 and 0.07 S cm−1 at 80°C. The lower proton conductivity from the ketone‐based polymer was compensated with very low methanol permeability (0.25 × 10−6 cm2 s−1) and outstanding oxidative stability. The selectivity of both polymer membranes exceeded the reported values for the state‐of‐the‐art Nafion® 117 and other commercially available options. Both polymer membranes, with their unique combination of ionic domains, elastomeric blocks, and resulting morphology, could be viable candidates for fuel cell applications.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献