Affiliation:
1. Xingzhi College Zhejiang Normal University Lanxi China
2. Key Laboratory of Intelligent Operation and Maintenance Technology and Equipment for Urban Rail Transit of Zhejiang Province Zhejiang Normal University Jinhua China
Abstract
AbstractThe product functions (PFs) extracted by local mean decomposition (LMD) of the noisy signal contain obvious energy‐concentrated pulses. As a result, the conventional amplitude threshold filtering used in wavelet transform (WT)‐based and empirical mode decomposition (EMD)‐based de‐noising methods is no longer applicable. To address this issue, an improved signal de‐noising method is proposed by using the multi‐level local mean decomposition (ML‐LMD), the superposition and recombination (SR) of high‐order PFs, the outlier detection, and waveform smoothing (OD‐WS) to remove noise by eliminating the pulse components. The proposed method's superior noise reduction performance is demonstrated through theoretical analysis and experimental verification. Compared to well‐known methods like WT‐based and EMD‐based de‐noising, the results show that the proposed method has significant comparative advantages in reducing noise in rolling bearing signals.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Subject
General Engineering,General Computer Science