Experimental study on the effect of load and air+gas/fuel ratio on the performances, emissions and combustion characteristics of diesel–LPG fuelled single stationary ci engine

Author:

Tchato Yotchou Giovani Vidal123ORCID,Issondj Banta Nelson Junior34,Kabini Karanja Samuel12,Ngayihi Abbe Claude Valery34

Affiliation:

1. Institute of Basic Sciences and Technology Pan African University, PAUSTI Juja Kenya

2. Department of Mechatronic Engineering Jomo Kenyatta University of Agriculture and Technology, JKUAT Juja Kenya

3. Laboratory of Energy, Materials, Modeling, and Method University of Douala Douala Cameroon

4. Department of Mechanical Engineering National Higher Polytechnic School of Douala, ENSPD Douala Cameroon

Abstract

AbstractDue to the issue of combustion stability when using natural gas and the problem of knocking when using both natural gas and hydrogen, liquefied petroleum gas (LPG) is then a good candidate to use for the dual‐fuel concept since it has been proven to be a good solution to limit the pollutants and the excessive use of fossil resources in the aim to support and advance the African Union's and UN's sustainable development goals. In this paper, the effect of load as well as the air + gas/fuel ratio on the performance, emission, and combustion characteristics of a dual‐fuel diesel–LPG engine, single‐cylinder, four‐stroke, direct injection diesel engine with a rated power of 3.5 kW at a speed of 1500 rpm has been carried out. Experiments have been performed in dual‐fuel mode for a range of loads from 0 to 12 kg and a range of volume flow of LPG from 1 to 5.5 L/min, and the results were compared with those obtained from the single‐fuel mode. Results show that the dual‐fuel mode gives better performance and fewer pollutants than the single‐fuel mode. For example, at low load, Brake thermal efficiency, the indicated thermal efficiency, and mechanical efficiency increased by 83.79%, 24.36%, and 41.77%, respectively, and by 57.48%, 19.84%, and 24.37% at high load when we moved from the single‐fuel mode to the dual‐fuel mode. The smoke, carbon monoxide, and NOx decreased by 24.3%, 94.2%, and 96.2% respectively at low load and by 62.3%, 89.8%, and 91.4% at high load. And, no knocking came up during this research compared to natural gas or hydrogen dual‐fuel engines.

Funder

African Union Commission

Publisher

Wiley

Subject

General Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3