Numerical simulation of mass and heat transport phenomena of hydromagnetic flow of Casson fluid with sinusoidal boundary conditions

Author:

Islam Md. Rafiqul1,Reza‐E‐Rabbi Sk.2ORCID,Yousuf Ali Md.2,Rasel Md. Mehedi Hasan3,Ahmmed Sarder Firoz2

Affiliation:

1. Department of Mathematics Pabna University of Science and Technology Pabna 6600 Bangladesh

2. Mathematics Discipline Khulna University Khulna 9208 Bangladesh

3. Department of Mathematics and Natural Sciences BRAC University Mohakhali Dhaka 1212 Bangladesh

Abstract

AbstractA magnetic field might interact with its surroundings, influencing chemical and physical processes in materials processing, heat exchangers, and other scientific study. Therefore, a computational study of non‐Newtonian (Casson) free convective MHD unsteady fluid flow has been highlighted in this article with mass and heat transit property through a vertical infinite porous plate. A sinusoidal boundary conditions as well as chemical reaction and thermal radiation have been considered. Using a collection of nondimensional variables, the flow related equations are also turned into nondimensional form. The EFDM algorithm is employed in order to arrive at a numerical solution via Compaq Visual Fortran. The reliability of the numerical solution has been confirmed using stability testing and convergence analysis. The whole system is convergent when the values of Prandtl number and Lewis number are greater than or equals to 0.075 and 0.025, respectively. A visual depiction of the impact of the pertinent factors on dimensionless velocity, temperature, and concentration profiles are displayed through graphical representation as well as with tabular representation. It has been inspected that when the magnetic component is regarded, it greatly affects the heat transfer factors of Casson nanofluid and the heat also rises when Eckert number, heat source and radiation parameter accelerate. It is also found that the Sherwood number is increased as the impact of chemical reaction parameter and the Lewis number, also the skin friction is decreased as the influence of porosity term got accelerated. The comparison of the current findings with the data that were previously published serves as the final stage in validating the present study.

Publisher

Wiley

Subject

General Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3