Fabrication of precise non‐assembly mechanisms by multi‐material fused layer modeling and subsequent heat treatment

Author:

Harden Felix1ORCID,Kral Roland1,Schädel Birgit1,Adelung Rainer2ORCID,Jacobs Olaf1

Affiliation:

1. Department of Mechanical Engineering and Business Administration Technische Hochschule Lübeck Lübeck Germany

2. Faculty of Engineering, Department of Material Science, Functional Nanomaterials Chair Christian‐Albrechts‐Universität zu Kiel Kiel Germany

Abstract

AbstractAdditive manufacturing techniques offer several potentials for future design and production. One of these potentials is non‐assembly mechanisms, movable mechanisms which need no assembly after production. Especially non‐assembly mechanisms consisting of kinematic pairs face major tolerance issues. This work advances into the new field of non‐assembly mechanisms consisting of kinematic pairs from multi‐materials. The research described in this article shows how tolerance issues can be overcome by the deliberate use of intrinsic and printing‐induced shrinkage processes. Therefore, non‐assembly mechanisms produced by multi‐material printing using fused layer modeling (FLM) are heat‐treated after the printing process to reduce and adjust the joint clearance. It was found that PLA was a suitable material for this process due to its relaxation and recrystallisation behavior during heat treatment. The printing techniques and relevant shrinkage mechanisms were analyzed and explained. Furthermore, it was found that relaxation of orientations and recrystallization could be separated in two different heat treatment steps creating a possibility for “induced self‐healing.” In addition, tribological aspects of such mechanisms will be discussed.

Publisher

Wiley

Subject

General Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3