Research on multi‐time scale modeling and interaction of electro‐thermal coupling integrated energy system

Author:

Tang Jian1,Feng Xiaoxing1,Liu Jianfeng12,Kang Heran13,Hao Xiaoqing4

Affiliation:

1. Economic and Technological Research Institute State Grid Inner Mongolia Eastern Electric Power Co, Ltd Hohhot China

2. School of Electrical Engineering Shenyang University of Technology Shenyang China

3. College of Energy and Power Engineering Inner Mongolia University of Technology Hohhot China

4. Inner Mongolia Hengsheng New Energy Technology Co., LTD Baotou China

Abstract

AbstractWith the enhancement of the coupling degree and interaction of the electro‐thermal integrated energy system, the fault propagation characteristics under multi‐time scale characteristics become more complex, which may trigger cascading failures and affect the safe operation of the system. Therefore, this article proposes to construct a multi‐time scale comprehensive model based on the steady‐state model and quasi‐dynamic model of electro‐thermal coupling integrated energy system, and uses the strategy of global iteration combined with local simultaneous solution to calculate the energy flow distribution of electro‐thermal coupling system under multi‐time scale. Combined with the characteristics of multi‐time scale energy flow distribution, the interaction mechanism and the fault propagation process of electro‐thermal coupling are analyzed. The simple electro‐thermal coupling integrated energy system and Barry Island electro‐thermal coupling integrated energy system are used as examples to analyze the electro‐thermal coupling characteristics and interaction of the system. The calculation results show that the disturbance of both electrical and heat loads will have a certain impact on the power system and heating system. Due to the thermal inertia of the heating system, there is a large time delay of fault propagation in the heating system. In the process of operation and scheduling of the electro‐thermal coupling integrated energy system, the slow dynamic characteristics of the heating system and the positive effect of thermal inertia on resisting the uncertainty factors in the system should be fully considered.

Publisher

Wiley

Subject

General Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3