Towards robust and accurate estimates of the incubation time distribution, with focus on upper tail probabilities and SARS‐CoV‐2 infection

Author:

Arntzen Vera H.1ORCID,Fiocco Marta123,Leitzinger Nils1,Geskus Ronald B.456ORCID

Affiliation:

1. Mathematical Institute Leiden University Leiden Netherlands

2. Biomedical Data Science, Medical Statistics Section Leiden University Medical Center Leiden Netherlands

3. Trial Data Center Princess Maxima Center for Childhood Oncology Utrecht Netherlands

4. Centre for Tropical Medicine and Global Health University of Oxford Oxford UK

5. Biostatistics Oxford University Clinical Research Unit (OUCRU) Ho Chi Minh City Vietnam

6. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine University of Oxford Oxford UK

Abstract

AbstractQuarantine length for individuals who have been at risk for infection with SARS‐CoV‐2 has been based on estimates of the incubation time distribution. The time of infection is often not known exactly, yielding data with an interval censored time origin. We give a detailed account of the data structure, likelihood formulation and assumptions usually made in the literature: (i) the risk of infection is assumed constant on the exposure window and (ii) the incubation time follows a specific parametric distribution. The impact of these assumptions remains unclear, especially for the right tail of the distribution which informs quarantine policy. We quantified bias in percentiles by means of simulation studies that mimic reality as close as possible. If assumption (i) is not correct, then median and upper percentiles are affected similarly, whereas misspecification of the parametric approach (ii) mainly affects upper percentiles. The latter may yield considerable bias. We suggest a semiparametric method that provides more robust estimates without the need of a parametric choice. Additionally, we used a simulation study to evaluate a method that has been suggested if all infection times are left censored. It assumes that the width of the interval from infection to latest possible exposure follows a uniform distribution. This assumption gave biased results in the exponential phase of an outbreak. Our application to open source data suggests that focus should be on the level of information in the observations, as expressed by the width of exposure windows, rather than the number of observations.

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3